Categories
cisco DIY

My Home Lab/Testing ground

A few days ago, my buddy, Greg Sowell posted his Mobile Home Lab. I figured I would show off the rack in my home office.

This is a mixture of gear that powers the basic network for the network in my home and for testing, blog posts, support, and videos\. Each floor of our 3 story home currently has a Unifi Access point on it powered by a toughswitch POE.  My top level, which is where my office is has a unifi pro that does both 2.4 and 5GHZ.  The other levels just do 2.4ghz.  This will change once I get a POE switch that does 48volt to power the UNIFI pro.  I have stuck with UNIFI because of the bar in our house.  Any self-respecting geek needs a guest wifi network.  WPA keys are too hard to dish out for those late arriving guests after some rounds of crown and coke.  So a Cloudkey makes guest access an easy venture.

As stated before the UNIFIs are powered by a Toughswitch, and the PRO has a 48VOLT POE and is linked into a port on the tough switch.  This switch is then uplinked into one of the gig links of the active 2950 switch.  Various other devices, some not plugged in at the moment due to need to get to a cubby hole for a roof project, are plugged into the 100 meg ports on this 2950.  Things such as the DVR for the security system, network printers, ethernet to my desk for testing, network drives, etc.  The other gig port is uplinked to our internet router.

Our internet is handled by a workhorse Mikrotik 493AH. This has a Comcast cable and a local WISP connection, which is a backup.  From this router, I am initiating several VPN, EOIP, and other tunnels to various clients and remote networks.  If you notice, this router also has a little rubber duck antenna.  Inside is a r52 card that is usually disabled by default.  This is a backup network for testing if I suspect an issue on the internal wireless network. I can log in, enable the card, and associate to the SSID and see if things are okay, at least as okay for 802.11b/g speeds.

 

Most everything else is for Cisco certification testing and keeping up on those certs as well as labbing up scenarios. As you guys will hear on our latest podcast, GNS3 and packet tracer are great, but sometimes you can’t beat actual hardware.

I too have a console server for turning my devices on and off. I do not have fancy remote access turned on, but I can remote to 6 devices at a time without getting up and moving the 4 feet to move a cable.  Welcome to the future!

Run down of some equipment
Cisco 2950 (one production and one lab)
2x Cisco 3750
Cisco 3640
Cisco 3560-X
Cisco 1841
Various Mikrotik routers
Ubiquiti EdgeRouter Pro
Ubiquiti EdgeSwitch 16
(The infinity is going into production soon at a data center)

The Cisco 2541 at the top is a shelf for the monitor for the DVR.  Make a great shelf!  In the future, I hope to add a Juniper router and some more gear.  As always, if you are a manufacturer I would be glad to review some of your gear and even do some configuration videos on it.

On a side notes, you don’t see much wireless gear.  That is a separate spot in my office.

Categories
xISP

MTIN is now a FLexOptic Reseller

MTIN typically is not a reseller for many product lines, for several reasons.  We like to be vendor agnostic and not chasing sales commissions on products, and we are not in the business of stocking product.

Having said this, we now have a reseller relationship with flexoptic.net.  They have optics you can code for a huge variety of manufacturers.  WISP clients will be intersted to know they support the following vendors:
-Brocade
-Cisco
-Ceragon
-Mikrotik
-Netgear
-Netonix
-Ubiquiti
and a whole bunch more. There are over 150 vendors supported.

The optics are coded with a product called Flexbox. The flexbox has several features to it such as coding, wavelength tuning of DWDM, distance analyzer, power measurement, and diagnostics.

FLEXBOX series - Configure Universal Transceivers | CSFP, SFP, SFP+, XFP, QSFP+, QSFP28, SFP28, CFP, CFP2, CFP4

We are working on some reviews, how-tos and other tutorials for these products. At the very least we are recommending everyone have a few optics of the form factors you use for compatibility troubleshooting.  If you have a device that you wonder if it is recognizing your optics correctly you can pull out this kit, code an optic for your device, and go on with troubleshooting.   Very handy for vendor optic issues.

If this is something you are interested in send us an e-mail for a quote on a starter kit and look for more information coming soon.

Categories
Bitlomat Cambium Networking UBNT Wireless WISP xISP

Learning, certifications and the xISP

One of the most asked questions which comes up in the xISP world is “How do I learn this stuff?”.   Depending on who you ask this could be a lengthy answer or a simple one sentence answer.  Before we answer the question, let’s dive into why the answer is complicated.

In many enterprise environments, there is usually pretty standard deployment of networking hardware.  Typically this is from a certain vendor.  There are many factors involved. in why this is.  The first is total Cost of Ownership (TCO).  It almost always costs less to support one product than to support multiples.  Things like staff training are usually a big factor.  If you are running Cisco it’s cheaper to train and keep updated on just Cisco rather than Cisco and another vendor.

Another factor involved is economies of scale.  Buying all your gear from a certain vendor allows you to leverage buying power. Quantity discounts in other words.  You can commit to buying product over time or all at once.

So, to answer this question in simple terms.  If your network runs Mikrotik, go to a Mikrotik training course.  If you run Ubiquiti go to a Ubiquiti training class.

Now that the simple question has been answered, let’s move on to the complicated, and typically the real world answer and scenario.  Many of our xISP clients have gear from several vendors deployed.  They may have several different kinds of Wireless systems, a switch solution, a router solution, and different pieces in-between.  So where does a person start?

We recommend the following path. You can tweak this a little based on your learning style, skill level, and the gear you want to learn.

1.Start with the Cisco Certified Network Associate (CCNA) certification in Routing and Switching (R&S).  There are a ton of ways to study for this certification.   There are Bootcamps (not a huge fan of these for learning), iPhone and Android Apps (again these are more focused on getting the cert), online, books, and even youtube videos. Through the process of studying for this certification, you will learn many things which will carry over to any vendor.  Things like subnetting, differences between broadcast and collision domains, and even some IPV6 in the newest tracks.  During the course of studying you will learn, and then reinforce that through practice tests and such.  Don’t necessarily focus on the goal of passing the test, focus on the content of the material.  I used to work with a guy who went into every test with the goal of passing at 100%.  This meant he had to know the material. CompTIA is a side path to the Cisco CCNA.  For reasons explained later, COMPTIA Network+ doesn’t necessarily work into my plan, especially when it comes to #3. I would recommend COMPTIA if you have never taken a certification test before.

2.Once you have the CCNA under your belt, take a course in a vendor you will be working the most with.  At the end of this article, I am going to add links to some of the popular vendor certifications and then 3rd party folks who teach classes. One of the advantages of a 3rd party teacher is they are able to apply this to your real world needs. If you are running Mikrotik, take a class in that. Let the certification be a by-product of that class.

3.Once you have completed #1 and #2 under your belt go back to Cisco for their Cisco Certifed Design Associate (CCDA). This is a very crucial step those on a learning path overlook.  Think of your networking knowledge as your end goal is to be able to build a house.  Steps one and two have given you general knowledge, you can now use tools, do some basic configuration.  But you can’t build a house without knowing what is involved in designing foundations,  what materials you need to use, how to compact the soil, etc.  Network design is no different. These are not things you can read in a manual on how to use the tool.  They also are not tool specific.   Some of the things in the Cisco CCDA will be specific to Cisco, but overall it is a general learning track.  Just follow my philosophy in relationship to #1. Focus on the material.

Once you have all of this under your belt look into pulling in pieces of other knowledge. Understanding what is going on is a key to your success.  If you understand what goes on with an IP packet, learning tools like Wireshark will be easier.  As you progress let things grow organically from this point.  Adding equipment in from a Vendor? Update your knowledge or press the new vendor for training options.  Branch out into some other areas ,such as security, to add to your overall understanding.

Never stop learning! Visit our online store for links to recommend books and products.

WISP Based Traning Folks.
These companies and individuals provide WISP based training. Some of it is vendor focused. Some are not.  My advice is to ask questions. See if they are a fit for what your goals are.
-Connectivity Engineer
Butch Evans
Dennis Burgess
Rickey Frey
Steve Discher
Baltic Networks

Vendor Certification Pages
Ubiquiti
Mikrotik
Cisco
Juniper
CWNA
CompTIA

If you provide training let me know and I will add you to this list.

Categories
BGP Networking

How I learned to love BGP communities, and so can you

BGP communities can be a powerful, but almost mystical thing.  If you aren’t familiar with communities start here at Wikipedia.  For the purpose of part one of this article we will talk about communities and how they can be utilized for traffic coming into your network. Part two of this article will talk about applying what you have classified to your peers.

So let’s jump into it.  Let’s start with XYZ ISP. They have the following BGP peers:

-Peer one is Typhoon Electric.  XYZ ISP buys an internet connection from Typhoon.
-Peer two is Basement3. XYZ ISP also buy an internet connection from Basement3
-Peer three is Mauler Automotive. XYZ ISP sells internet to Mauler Automotive.
-Peer four is HopOffACloud web hosting.  XYZ ISP and HopOffACloud are in the data center and have determined they exchange enough traffic amongst their ASN’s to justify a dedicated connection between them.
-Peer five is the local Internet exchange (IX) in the data center.

So now that we know who our peers are, we need to assign some communities and classify who goes in what community.  The Thing to keep in mind here, is communities are something you come up with. There are common numbers people use for communities, but there is no rule on what you have to number your communities as. So before we proceed we will need to also know what our own ASN is.  For XYZ we will say they were assigned AS64512. For those of you who are familiar with BGP, you will see this is a private ASN.  I just used this to lessen any confusion.  If you are following along at home replace 65412 with your own ASN.

So we will create four communities .

64512:100 = transit
64512:200 = peers
64512:300 = customers
64512:400 = my routes

Where did we create these? For now on paper.

So let’s break down each of these and how they apply to XYZ network. If you need some help with the terminology see this previous post.
64512:100 – Transit
Transit will apply to Typhoon Electric and Basement3.  These are companies you are buying internet transit from.

64512:200 – Peers
Peers apply to HopOffACloud and the IX. These are folks you are just exchanging your own and your customer’s routes with.

64512:300 – Customers
This applies to Mauler Automotive.  This is a customer buying Internet from you. They transit your network to get to the Internet.

64512:200 – Local
This applies to your own prefixes.  These are routes within your own network or this particular ASN.

Our next step is to take the incoming traffic and classify into one of these communities. Once we have it classified we can do stuff with it.

If we wanted to classify the Typhoon Electric traffic we would do the following in Mikrotik land:

/routing filter
add action=passthrough chain=TYPHOON-IN prefix=0.0.0.0/0 prefix-length=0-32 set-bgp-communities=64512:100 comment="Tag incoming prefixes with :100"

This would go at the top of your filter chain for the Typhoon Electric peer.  This simply applies 64512:100 to the prefixes learned from Typhoon.

In Cisco Land our configuration would look like this:

route-map Typhoon-in permit 20  
match ip address 102  
set community 64512:100

The above Cisco configuration creates a route map, matches a pre-existing access list named 102, and applies community 64512:100 to prefixes learned.

For Juniper you can add the following command to an incoming peer in policy-options:

set community Typhoon-in members 64512:100

Similar to the others you are applying this community to a policy.

So what have we done so far, we have taken the received prefixes from Typhoon Electric and applied community 64512:100 to it.  This simply puts a classifier on all traffic from that peer. We could modify the above example to classify traffic from our other peers based upon what community we want them tagged as.

In our next segment we will learn what we can do with these communities.

Categories
Networking

CISCO 6500 series

For those of you who are running Cisco 6500 series chassis, and are looking for upgrades it can be quite confusing.  While it’s been out awhile, the Supervisor 2T is one possible upgrade.

The Cisco Supervisor Engine 2T is supported only in the Cisco Catalyst 6500 E-Series chassis:

Somethings to keep in mind.  They must have generation 4 line cards.  LineCards will CFC’s will work, as these are newer. Modules with DFC 3 will not power up.

Linecards which are compatible:

• WS-X6908-10G-2T, WS-X6908-10G-2TXL
WS-X6824-SFP-2T, WS-X6824-SFP-2TXL
WS-X6848-SFP-2T, WS-X6848-SFP-2TXL
WS-X6848-TX-2T, WS-X6848-TX-2TXL
WS-X6816-10T-2T, WS-X6816-10T-2TXL
WS-X6816-10G-2T, WS-X6816-10G-2TXL
WS-X6904-40G-2T, WS-X6904-40G-2TXL
WS-X6704-10GE with CFC
WS-X6724-SFP with CFC
WS-X6748-SFP with CFC
WS-X6748-GE-TX with CFC
WS-X6148A-RJ-45, WS-X6148A-45AF, WS-X6148-FE-SFP, WS-X6148A-GE-TX, WS-X6148A-GE-45AF, WS-X6148E-GE-45AT

With a DFC4 or DFC4XL upgrade (WS-F6k-DFC4-A, WS-F6k-DFC4-AXL)

WS-X6704-10GE
WS-X6724-SFP
WS-X6748-SFP
WS-X6748-GE-TX

With a DFC4 or DFC4XL upgrade (WS-F6k-DFC4-E, WS-F6k-DFC4-EXL)

WS-X6716-10G-3C, WS-X6716-10G-3CXL
WS-X6716-10T-3C, WS-X6716-10T-3CXL

Categories
Data Center

What is a DCI?

As you get more and more into Cisco Data Center terminology you come across the term DCI.  DCI is a Data Center Interconnect. DCI’s typically come in 3 categories.

Dark Fiber (CWDM/DWDM)
MPLS Layer 2 VPN (VPWS/VPLS)
MPLS Layer 3 VPN

A DCI is basically a LAN extension over one of the above methods.

Categories
DIY Networking

Cisco Rolled Cable

I was recently talking to a gentleman who came by and purchased some excess Cisco gear for his CCNA/CCNP studies.  I got on the topic of he didn’t need the special cisco cable if he had serial to ethernet adaptors.  Basically a Cisco rolled cable is just a cable with the ends flipped.
rollover-cable-wiring
As you can see the order is just reversed on one side.